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LETTER TO THE EDITOR

Finding the Rate-Determining Step in a Mechanism

Comparing DeDonder Relations with the “Degree of Rate Control”

In a recent paper (J. A. Dumesic, J. Catal. 185, 496 (1999)),
Dumesic argued that “DeDonder relations offer a rigorous ap-
proach for assessing whether a reaction scheme contains a rate de-
termining step.” Here, we argue that, while analysis with DeDonder
relations is a very powerful approach that has many advantages,
it has a limitation with respect to finding the rate determining
step, and another method, previously proposed by this author
(C. T. Campbell, Topics Catal. 1, 353 (1994)) involving the “de-
gree of rate control,” is preferable in that particular respect. An
approach for extending this latter method to transient kinetic con-
ditions is also suggested. c© 2001 Elsevier Science
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I. INTRODUCTION

The “rate-determining step” (RDS) is a very common
concept in discussing the kinetics of reaction mechanisms
and is one frequently treated in papers and textbooks on this
subject (1–13). Nevertheless, the definition of the RDS and
how one determines which step it is in a complex mechanism
are still subject to some controversy (1, 2, 7, 10, 13). Pre-
scriptions for defining the rate determining step have been
discussed on numerous occasions (1, 2, 7, 10, 13). Most re-
cently, Dumesic has defined it on the basis of the DeDonder
relation for the affinities of elementary steps (1). It is shown
here that this definition is not as general as that offered
previously by Campbell on the basis of his concept called
the degree of rate control of elementary steps (2). The de-
gree of rate control of a step, as mathematically defined by
Campbell (2), is useful in kinetic modeling, and in putting
terms such as rate-controlling step and rate-limiting step into
a more rigorous framework. It includes essential informa-
tion about the activation free-energy barrier for the RDS
ignored by Dumesic’s method for finding the rate determin-
ing step (which involves only the thermodynamic driving
force).

II. DUMESIC’S METHOD FOR SPECIFYING THE RATE
DETERMINING STEP INVOLVING DEDONDER

AFFINITIES (FROM (1))

The net rate for an elementary step i, r i, is defined as
its forward rate, ri, minus its reverse rate. The affinity for
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step i is simply its thermodynamic driving force, i.e., the
difference in Gibbs free energies of the reactants minus
that for the products

Ai = −∑
j
(νij · µj), [1]

where νij is the stoichiometric coefficient for species j in
step i (negative for reactants and positive for products), µj

is the chemical potential of species j, and the sum is over all
species j involved in that step as reactants or products. The
affinity of i therefore can be expressed also in terms of the
activities of the species present in the reaction mixture

Ai = −RT · ln
{[∏

j

(
a
νij

j

)]/
Keq,i

}
, [2]

where aj is the activity of species j (related closely to its
concentration), Keq,i is the equilibrium constant for step i,
and the product runs over all species j involved in step i as
reactants or products. Dumesic defined the reversibility of
step i, zi, as

zi = exp(−Ai/RT) =
[∏

j

(
a
νij

j

)]/
Keq,i. [3]

Note that zi equals zero when there are not yet any prod-
ucts for step i, and it approaches unity as that reaction step
approaches equilibrium. Dumesic also defined the overall
reversibility of the net (overall) reaction, ztotal, as

ztotal =
[∏

j

(
a
νj

j

)]/
Keq, [4]

where Keq is the equilibrium product for the overall reac-
tion and the product runs over the products and reactants
of the overall reaction.

According to the DeDonder relation, we may write the
net rate of step i in terms of its forward rate and the affinity
for step i

r i = ri · [1− exp(−Ai/RT)]. [5]
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Dumesic (1) defined the existence of a rate determining
step by saying that “a particular step m is rate determin-
ing if the value of zm is approximately equal to ztotal, and
all other values of zi for the remaining steps are essentially
equal to unity.” He further showed beautifully that this is
quite a useful definition that can be applied to advantage
in many circumstances to analyze reaction schemes. We ar-
gue, however, that this way of finding the rate determining
step is too limiting in that the reversibility of a step ad-
dresses only its thermodynamic driving force, and in no way
contains information about the activation barrier involved.
One must in some way include these essential kinetic details
in a definition of the rate determining step if one wishes to
locate the overall reaction’s bottleneck step in a completely
general way for complex reaction mechanisms. We further
argue that one can learn the location of a bottleneck in
any complex reaction with an analysis that compares the
“degree of rate control” of the elementary steps, which is
like performing a sensitivity analysis to learn which elemen-
tary rate constant(s) most sensitively influence the overall
reaction’s rate.

We emphasize that this minor limitation of Dumesic’s
method for reaction analysis in no way should detract from
the many, very powerful tools it provides in understand-
ing and simplifying kinetics. It is a method that should be
embraced, as it can be utilized to great advantage.

III. CAMPBELL’S METHOD FOR SPECIFYING THE RATE
DETERMINING STEP INVOLVING THE DEGREE

OF RATE CONTROL

Frequently in analyzing the kinetics of a complex reac-
tion mechanism, one would like to evaluate the extent or
degree to which a particular step controls the overall reac-
tion rate. Campbell (2) pointed out that this can be easily
done within a kinetic model using a type of sensitivity anal-
ysis, by simply increasing both the forward and reverse rate
constants for that step by 1% (thus not changing its equi-
librium constant), and calculating the resulting fractional
increase in the overall rate. The step whose increase leads
to the greatest increase in overall rate, R, is then the most
rate-controlling. The degree to which a step controls the
overall rate is just the percentage increase in the overall
rate divided by this 1%. To be more rigorous, one must take
the limit of this ratio as this 1% change shrinks to zero. To
put this concept on a more rigorous, differential calculus
basis, Campbell (2) defined the degree at rate control for
step i, Xrc,i, as

Xrc,i = (ki/R) · (δR/δki), [6]

where the partial derivative, δR/δki, is taken holding
constant the equilibrium constant for step i and the rate

constants kj for all other steps j. Here, keeping Keq,i

constant just means that the rate constant for the reverse
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of step i must also be changed when taking this derivative
(i.e., δki/ki= δk−1/k−1). Note that the partial derivative in
this expression can easily be calculated from an analytical
expression for the net rate R involving the various ele-
mentary steps’ equilibrium constants and rate constants,
if such an expression is available or can be derived from
the mechanism under study. Much more importantly in
the modern computer age, it can also be calculated by
numerical methods if no analytical expression can be
derived, simply by changing the values for both of the
parameters ki and k−i by a small amount (e.g., by+1%,
for which δki/ki = 0.01) and seeing how much this affects
the net rate R established at steady state (δR/R). The
steady-state rate can be solved by any computerized
solution to the series of differential equations defined by
the elementary-step rate equations and initial conditions
(e.g., by finite-difference methods). The reader who has
dealt with such computer simulations will recognize that
the complexity of interconnected reactions that can be
dealt with in this way is almost limitless. Care should be
taken, of course, to ensure that the change in ki is small
enough that the response in R is linear, yet not so small that
the response is computationally inaccurate or imprecise.

Campbell (2) further suggested a new definition for rate-
determining step as that step m in a mechanism which has a
degree of rate control (Xrc,m) equal to unity. This definition
gives the same RDS as that obtained by the definition of
RDS proposed by Dumesic for all the example mechanisms
considered by Dumesic in (1). Furthermore, this definition
gives the same RDS as that obtained by the definition of
RDS proposed by Boudart and Tamaru for all the exam-
ple mechanisms considered by Boudart and Tamaru in (7).
For all those mechanisms considered by both Boudart and
Tamaru (7) and Dumesic (1), where there was a single RDS,
the degree of rate control for that step is found to be 1.0,
and it is zero for all other steps. Campbell postulated that
this is generally true (2), and we show further evidence that
suggests it is true below.

Note that an analytical expression for the rate equation
for the overall reaction is needed in the Boudart/Tamaru
definition of the RDS but not in Campbell’s definition.
Campbell’s definition is easy to apply in complex reactions,
where computer modeling is necessary and analytical ex-
pressions for the overall rate equation may not be available.

Campbell proposed (2) that a rate-controlling step or slow
step be defined as any step i with a non-zero Xrc,i. There can
be more than one rate-controlling step in certain mecha-
nisms. He further proposed that steps where the degree of
rate control is positive be called rate-limiting steps. This def-
inition clearly identifies steps where an increase in rate con-
stant would be beneficial, and where catalyst improvement
would be effective. Of course, there can be more than one

rate-limiting step in certain mechanisms, and some steps
will be more rate-limiting than others (those with larger
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Xrc). He proposed that steps where the degree of rate con-
trol is negative be called inhibition steps. The degree of rate
control should be a useful concept in catalyst design, and
in evaluating how closely reaction conditions approach a
situation where there is a single RDS. A step would, for
example, be nearly rate determining if its Xrc value were
between 0.6 and 1.0. We propose a practical limit for Xrc of
0.95, above which a step is considered to be the rate deter-
mining step, since a value of exactly unity is only achieved
in limiting cases not realizable in the laboratory.

The value of Campbell’s concept of the degree of rate
control has been demonstrated by Baranski (10) in three
selected example mechanisms (a) a series of any number of
consecutive steps, (b) the shrinking-core model of gas–solid
interactions, and (c) a catalytic reaction on the surface of
a solid. Baranski also proved for mechanisms of type (a)
that, if a rate determining step, i, exists with a degree of
rate control equal to unity (i.e., Xrc,i = 1), then the degree
of rate control for all other steps j is zero (Xrc,j6=i = 0).

Stoltze (11) supported the use of the degree of rate con-
trol in microkinetic modelling. Sriramulu (14) also showed
that it is powerful in analyzing kinetics and mechanisms in
complex electrocatalytic reactions.

The degree of rate control of a step quantifies the im-
portance of that step in determining the overall reaction
rate for the whole, complex mechanism, independent of
the equilibrium constant for that step. It answers the ques-
tion: If one could find a catalyst which accelerated only that
one step (without affecting its equilibrium constant or the
rate constants of other steps, for example, by stabilizing its
transition state), then how much would this affect the over-
all reaction rate? This is obviously of practical importance
since, in a complex industrial process, finding a good cata-
lyst for any step with a large degree of rate control would
lead to a faster net reaction. It thus helps one identify the
bottlenecks in a process and highlights those steps where
one should concentrate the most effort in process improve-
ment. It is easiest to imagine this in a multistep reaction
mechanism or process which is not initially catalytic, where
it simply identifies the step(s) where a catalyst is needed. Of
course, it is harder to imagine such a “catalyst” when one
is already dealing with a catalytic mechanism where almost
all species are already adsorbed on a surface. It thus be-
comes a thought experiment, analogous to finding a surface
additive which somehow magically stabilizes the transition
state to that one elementary step without affecting the en-
ergies of any other adsorbed species. Strictly speaking, this
is probably impossible experimentally. Still, in many real
surface mechanisms, it may be possible to achieve a similar
improvement in net rate with an additive (or surface struc-
tural change) which stabilizes both the transition state and
the product of that step, or which destabilizes the reactant

and, to a lesser extent the transition state of that step. If the
transition state has a different charge or dipole moment
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than the reactant or product, it is not hard to imagine a
surface additive (e.g., an electropositive or electronegative
adatom) that might do this, without too dramatically chang-
ing the other elementary steps. This might also be useful in
selectivity improvement, by finding selective poisons for the
rate-controlling step(s) in the net rate to an undesirable side
product, or by promoting its inhibition step (if one exists).

A criticism might be that surface additives surely affect
the energies of all surface species (13). However, as our
knowledge of surface chemistry grows, so too will our ability
to identify surface additives or surface structural changes
which affect more strongly the energies of some types of
species compared to others. At the very least, identifying
the steps with large degrees of rate control should give us
good ideas for catalyst improvement. Also, if one is inter-
ested in microkinetic modeling, the steps with large degrees
of rate control are the steps whose rate constants most
sensitively affect the net rate. The degree of rate control
thus identifies those steps where one should concentrate the
most effort in measuring accurate rate constants. In sum-
mary, the degree of rate control is a powerful concept in
many ways.

The ratio of the net rate to the forward rate of step i,
which has been used previously in kinetic analyses (8, 9),
is somewhat similar to the degree of rate control in some
mechanisms, but it can be quite different too, depending on
the mechanism.

IV. COMPARISON OF CAMPBELL’S
AND DUMESIC’S METHODS

One very obvious difference between Campbell’s and
Dumesic’s methods for ascertaining the RDS appears
whenever the mechanism includes the slow step followed
by a fast step. In such cases, both these steps will initially
have a value for zi that is much less than unity. Therefore, in
such cases, Dumesic’s method would fail to identify a RDS,
but Campbell’s method would identify the slow step as rate
determining. Depending upon the relative equilibrium con-
stants for these two steps, it is possible to have the value of
zi for the last step be smaller than that for the slow step.
This would be the opposite of the ordering of the relative
degree of rate control for those two steps!

Let us analyze a simple, concrete example reaction mech-
anism, which highlights this difference between Campbell’s
and Dumesic’s methods for ascertaining the RDS. Consider
the mechanism:

Step 1: A ⇀↽ B k1 = 1/s; k−1 = 1/s; Keq, 1 = 1.
Step 2: B ⇀↽ C k2= 10−4/s; k−2= 10−6/s; Keq, 2= 102.

Step 3: C ⇀↽ D k3= 10−2/s; k−3= 10−6/s; Keq, 3= 104.

Net reaction: A ⇀↽ D.
One can see from the magnitudes of these rate constants
that the first step will be fast to equilibrium, and that the
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second step will be slow and rate determining. Step 3 is fast,
but remains very far from equilibrium for a long time (until
the overall reaction is >99.99% complete).

Consider the simplified case wherein the above reaction
occurs in an ideal solution of fixed volume (i.e., as a batch re-
action), with the activity of each species n then just being its
molar concentration, [n]. Consider starting the reaction at
time t = 0 with [A]0 = 2.000 molar, and [B]= [C]= [D]=
0. In just a few seconds, the equilibrium in step 1 is estab-
lished, and [B] = Keq,1 [A] = Keq,1([A]0-[B]). This can be
rearranged to give

[B] = Keq,1[A]0/(1+ Keq,1) = [A]0/2 = 1.000 M. [7]

Note that step 2 is so slow that almost no C nor D has
yet been made. The concentrations of A and B remain at
∼1.0 M for ∼103 s, but they eventually get consumed sig-
nificantly by step 2 on a slower time scale. Since k3À k−2,
one can write

d[C]/dt = k2[B]− k3[C]+ k−3[D]. [8]

The last term can be ignored as long as [D] remains ¿
Keq,3 [C] (which will be true for>103 s). At such times, this
can be solved to give

[C] = (k2/k3)[B]{1− exp(−k3t)}. [9]

Since [B]= 1.0 M at such times, we see that [C] grows
rapidly until it reaches a nearly steady-state concentration
[C] = (k2/k3)[B] = 10−2 M, after ∼250 s. It remains near
this concentration until A and B start to get significantly
consumed (only after ∼2× 103 s). One can also write

d[D]/dt = k3[C]− k−3[D], [10]

which gives

[D] = Keq,3[C]{1− exp(−k−3t)}. [11]

At times less than∼103 s, this reduces to a linear growth in
[D]

[D]= k3[C]t = k2[B]t = k2([A]0/2)t = (10−4 M/s) · t. [12]

This holds approximately true as long as the intermediate
C holds a reasonably steady-state concentration (i.e., from
∼250 to∼2× 103 s). While this steady-state approximation
holds, the net reaction rate is approximately

R = d[D]/dt = k2{[A]0/(1+ Keq,1)}
= k2([A]0/2) = (10−4 M/s). [13]
From this analytical expression, one can see that the de-
gree of rate control is unity for step 2 and zero for all other
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steps:

Xrc,1 = (k1/R) · (δR/δk1) = (k1/R) · 0 = 0. [14]

Xrc,2 = (k2/R) · (δR/δk2) = (k2/R) · ([A]0/2)

= k2/{k2([A]0/2)} · ([A]0/2) = 1.00. [15]

Xrc,3 = (k3/R) · (δR/δk3) = (k3/R) · 0 = 0. [16]

Step 2 is thus the rate-determining step in this mechanism
according to Campbell’s criterion. This agrees with intu-
ition.

However, this is not obvious from Dumesic’s method
since, during this steady-state period, both steps 2 and 3
have values for their reversibilities (zi), which are far below
unity, but neither is equal to the net reversibility:

z1 =
[∏

j

(
a
νij

j

)]/
Keq,1 = ([B]/[A])/Keq,1 = 1.0. [17]

z2 = ([C]/[B])/Keq,2 = (k2/k3)/(102) = 10−4. [18]

z3 = ([D]/[C])/Keq,3 = (k3[C]t/[C])/(104) = (10−6 s−1) · t
= 2.5× 10−4 to 10−3 in this time range. [19]

Note that ztotal= ([D]/[A])/Keq= z1z2z3= 2.5× 10−8 to
10−7 in this time range. Thus, neither z1, z2 nor z3 equals
ztotal, so there is no obvious RDS according to Dumesic’s cri-
terion, in contrast to the conclusion by Campbell’s method.
Clearly, Campbell’s criterion is more general in that it also
identifies the RDS even in these types of mechanisms where
the slow step is followed by fast steps.

Note that a catalyst that accelerated only step 2 would
increase the net reaction rate proportionally. A catalyst that
accelerated only step 1 or only step 3 would have absolutely
no effect on the net reaction rate. This is consistent with the
definition of RDS based on Campbell’s criterion involving
the degree of rate control of the involved steps.

V. USING CAMPBELL’S METHOD
IN TRANSIENT KINETICS

Campbell’s method was mainly intended for application
to kinetics where a steady-state or quasi-steady state rate
has been established, as, for example, in a flow reactor, or
for low conversion rates in batch reactors. However, it can
be applied to transient kinetics within some microkinetic
models as follows:

1. Using the microkinetic model’s true kinetic param-
eters, numerically simulate the kinetic transient, starting
from its initial steady-state condition at time t = 0 when the
perturbation occurs up to some time of interest after per-
turbation, t .
2. Starting at time t , increase both the forward and re-
verse rate constants for step i by 1% (thus not changing its
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equilibrium constant), and let the reaction simulation pro-
ceed from time t with these new, altered rate constants. The
concentrations of some intermediate(s) consequently will
change. If these concentrations change to new, quai-steady-
state levels quickly, meaning on a time scale dt that is short
compared to t (i.e., dt ¿ t), then it is possible to estimate
the resulting incremental change in the net reaction rate at
time t + dt, δR(t + dt), due to this incremental increase in
rate constant, δki/ki = 0.01. Thus,

δR(t + dt) = R′(t + dt)− R(t + dt), [20]

where R′(t + dt) and R(t + dt) are the net rates at time
t + dt calculated by the simulation with and without this
incremental increase in rate constants for step i (and−i) at
time t , respectively.

3. Calculate the resulting fractional change in the net
rate at time t + dt, δR(t + dt)/R(t + dt), and the degree of
rate control of step i, Xrc,i, using Eq. [6] with δki/ki = 0.01.
The resulting value of Xrc,i applies most accurately at time
t + (dt/2), which is very close to time t . This degree of rate
control can be calculated similarly for all the elementary
steps. Their values rank these steps with respect to the sen-
sitivity of the net reaction rate at that time to their rate con-
stants, and identifies which step(s) are kinetic bottlenecks
for product formation at that time during the transient.

4. If necessary, repeat steps 1–3 with smaller and smaller
incremental increases (instead of the 1% above) until this
approaches a true differential limit.

VI. CONCLUSIONS

The degree of rate control is a powerful concept in that
it identifies the step(s) in a complex mechanism where one
can gain the most by accelerating the rate (for example,
by identifying a selective catalyst or catalyst additive to ac-
celerate that step) or by studying the rate further (for ex-
ample, when developing a microkinetic model). Note that
an analytical expression for the net rate is not needed to

determine the degree of rate control. It can be done eas-
ily in even the most complex mechanisms by using finite
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difference or other numerical methods which can be easily
implemented with a desktop computer. The degree of rate
control is also pedagogically instructive, in that it is easy
to define and calculate, and it easily identifies the step(s)
whose rate constant(s) enter explicitly into the analytical
expression for the net rate (and not just indirectly in the
form of equilibrium constants).
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